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LETTER TO THE EDITOR 

Finite size study of the spin-; dimerised Heisenberg chain 
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‘ A ,  Montrtal, Qutbec, Canada H3C 3A7 
$ Departement de physique, Universitt de  Montrtal, CP 6128, Succursale ‘A’, Montreal, 
Qutbec, Canada H3C 3J7 

Received 2 January 1985 

Abstract. We present the results of a finite size analysis of the one-dimensional spin-f 
dimerised Heisenberg chain. The value of the gap exponent, v, is obtained using two 
extrapolation procedures. When logarithmic corrections are taken into account, we obtain 
the values v = 0.668 f 0.001 and v = 0.667 k0.002, in good agreement with the conjectured 
value v = f. We compare these results with those obtained assuming a pure power-law 
behaviour. 

In this letter, we are concerned with the estimation of the exponent, v, which charac- 
terises the opening of the gap in the excitation spectrum of the one-dimensional ( I D )  

dimerised spin-; antiferromagnetic Heisenberg chain at zero temperature. The Hamil- 
tonian is 

N 

H = J c { 1 + (- 1 ) is}{  si . si+, -a>  ( 1 )  
i =  I 

where the alternation parameter, S, is restricted to 161 s 1 and where S, is the spin-; 
vector operator at site i. The exchange coupling is antiferromagnetic and the sum runs 
over the N sites of the chain, which we shall assume even. 

Cross and Fisher (1979) have predicted a power-law behaviour for the gap, A, in 
the excitation spectrum of (1). Near criticality ( 6 + O ) , A - l S J U  with v = $ .  The I D  

Hamiltonian (1) has been shown by Kohmoto et a1 (1981) to be equivalent to the 2~ 

Ashkin-Teller model which, at the bifurcation point (Kadanoff 1980), corresponds to 
the 2~ four-state Potts model for which marginality effects are important. These effects 
are associated either with the presence of a dilution field (Nauenberg and Scalapino 
1980) or with umklapp scattering (Black and Emery 1981). As a consequence of these 
marginality effects, logarithmic correction terms to the above power-law behaviour are 
expected. These corrections have been invoked (Hamer 1981) to explain the dis- 
crepancy between the estimated values of v and the value, which den Nijs (1979) has 
conjectured, of f .  The reader is referred to the paper of Hu (1980) for a list of references 
concerning the estimation of this exponent. We add to this list the result of Fields 
(1979; v = 0.86), the result of Hamer (1981 ; 1 /  v = 1.40i  0.03), the estimation of 
Herrmann (1981 ; 1 /  v = 1.48 f 0.01 ) and the recent calculations of Alcaraz and de 
Felicio (1984; 1/  v = 1.42 kO.05). In this letter, we present an analysis of finite size 
data which takes into account logarithmic corrections to scaling in the form suggested 
by the work of Blote and Nightingale (1982). We estimate the values of v and 1/  v 
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using the Vanden Broeck and Schwartz (1979) approximants (VBS) and I /  N" fit. We 
also compare the results with those obtained assuming a pure power-law behaviour. 

In order to introduce the main aspects of our calculations, we first write the 
Hamiltonian ( 1 )  in terms of spinless fermion variables. Using the Wigner-Jordan 
transformation, one obtains (Soos 1965): 

H = - J  2 n , + J  

J 
2 

N N J N - I  

, = I  I = I  , = I  
{ 1 + ( - 1 ) ' 8 ) n ~ + i + ~  c {1+(-l)'8>{flf;+i+cc) 

( 2 )  --(-l)"{l +8}{ f i fN+CC) .  

The spinless fermion operator f,' (f;) creates (annihilates) a particle at site i and 
n, =f:f; ; u = X n, is the operator for the total number of particles. The sign of the 
last term in ( 2 )  thus depends on the parity, a, of the total number of particles. The 
Hamiltonian ( 2 )  can also be written in k space. The set of allowed values of k is 
obtained from the periodic boundary conditions (PBC)  imposed on the original spin 
Hamiltonian (1) (i.e. SN+l = SI). This yields 

exp(ikN) = - ( - l ) = .  (3) 

The boundary conditions imposed on the spinless fermion system thus depend upon 
the parity of a ; that is, PBC for odd values of a (fN+, =fl)  and antiperiodic boundary 
conditions (APBC) for even a ( fN+,  = -fl). According to (3), states with different 
numbers of particles, for instance m and m + 1 particles, do not share the same set of 
k's. In the half-filled band case, neither do two consecutive cell sizes, N and N + 2,  
share the same set. This may affect the extrapolation of finite cell results, such as those 
for the ground-state energy and for the gap in the excitation spectrum, to the N + m  
limit. The situation may be improved by using modified boundary conditions ( M B C )  
(Jullien and Martin 1982). This procedure has been shown to be powerful in reproduc- 
ing some exact results such as the essential singularity exponent, s = f, that characterises 
the opening of the gap in the excitation spectrum of the I D  Heisenberg-Ising model 
(Spronken et a1 1981) and the essential singularity exponent, s = 1, of the I D  Hubbard 
model (Uzelac 1984, Fourcade and Spronken 1984). When MBC are used the k's are 
shifted so that the set of allowed k's is, for a given N, independent of the number of 
particles, and such that cells of different size share at least one lkl, which we shall take 
as 1 kl = 7r/2. It is easily seen that this is achieved provided the quantities -( - 1)" and 
-(-l)a, in (2) and (3), are replaced by (-l)"*. Note that the MBC, when applied to 
the I D  dimerised XY chain, yields, for the gap: A N ( 8 )  = 2/61; the exact result as N + a3 
(Fields 1979) is then exactly recovered for all cell sizes. 

We have applied the MBC to the spinless fermion Hamiltonian (2). The ground-state 
energies, for N / 2  and N / 2 +  1 particles, are obtained using the Lanczos algorithm 
(Whitehead et a1 1977). An important aspect of this method is that the ground-state 
energy, E, converges rapidly as one increases the number of Lanczos steps. There is, 
in addition, another important result: the average values of some operators (Fourcade 
and Spronken 1984) also converge rapidly. This is the case of the operator (J  = 1 )  

1 
, = I  2 , = I  2 

N 1 N-l  

D = c (- 1 ) h n , + ,  +- (-  1 ) '{f ,+f ;+l+ cc} +-(- I)N'2{f:fN + cc) (4) 

which, according to a theorem due to Feynman (1939), is the derivative of the ground- 
state energy with respect to the alternation parameter 8. Typical accuracy for the 



Letter to the Editor L355 

ground-state energy and its derivative is of the order of nine significant figures. As a 
consequence, the gap, defined as (J = 1): 

A N  ( S ) = 2{ E ( S , $  N + 1 ) - E ( a,$ N ) } ( 5 )  

and its derivative, A&(S) = d A N ( S ) / d S  can be computed with great accuracy. In ( 5 ) ,  
E ( S ,  m) stands for the ground-state energy of a chain filled with m particles and we 
have made used of the electron-hole symmetry property of the spectrum of H. 

In figure 1 we compare the results obtained for the inverse of the gap, A;'(O), using 
the MBC (case A) and the usual boundary conditions (case B). This quantity apparently 
approaches a straight line, Ai'(0)  = a + bN, for all N's in the case A and for N B  8 in 
the case B. To conclude that the MBC results simulate the asymptotic limit (AG'(0) - N )  
can be misleading, however. Additional size dependences of the results are expected 
the case B. To conclude that the MBC results simulate the asymptotic limit ( A i ' ( 0 )  - N )  
A;'(O) - N+O(N/ ln  N ) .  Similar effects could also occur in case A. 

N 

Figure 1. Plot of the inverse of the gap, A;'(O), as a function of the size N :  A, the M B C  

results; B, the PBC results. 

For the range studied here ( 2 s  N S  18), the apparent linear behaviour of the MBC 

results suggests that the quantity Q i ' ( S )  = A i ' ( S )  - a satisfies a modified phenomeno- 
logical renormalisation group equation, NQN( 8) = M Q M (  8') (Nightingale 1982). 
Indeed, we find that the quantity NQN(S) ,  when plotted as a function of 8, yields a 
set of curves all intersecting at 6 = 0, the expected critical value of the alternation 
parameter. Note that a similar plot of N A N ( S )  yields a set of curves intersecting at 
negative values of 8, a result which violates the symmetry property of the spectrum of 
the Hamiltonian upon the exchange 6 -8. Obviously, the quantities QL'(0) and 
AL'(0) become identical as N + 00. Accordingly, the above results suggest that a finite 
size study, at S = 0, of the quantity Q ; ' ( S )  should yield information about the infinite 
system gap exponent, v. We write the finite size scaling equation for the quantity 
Q i ' ( 8 )  as 

QL'(8) = N F ( 8 Z )  ( 6 )  

where F ( Z 8 )  is a universal scaling function which can depend on the boundary 
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conditions (Privman and Fisher 1984). At S = 0, one has F ( 0 )  = b. The quantity 2, in 
equation (6), is 2 = N"" for the pure power-law case (Fisher and Barber 1972) and 
Z = [N/( ln  N)1'2]''" when logarithmic corrections are taken into account. In this last 
case, we have neglected, in (6), all additional corrections to scaling in order to keep 
the expression as simple as possible (Blote and Nightingale 1982, Herrmann 1981). 
The calculation of Q&'( 6) is affected by unavoidable lack of accuracy in determining 
the quantity a. This can be avoided by differentiating (6). One obtains, at S = Of: 

Q)N(o+)/Q$(o+) = A',(o+)/A$(o+) - Z N  (7) 

where Z is defined above and A N ( O + )  and A)N(O+) are computed from (4) and ( 5 ) .  
The gap exponent, v, is obtained from a two-point fit ( 4 s  N S  18) and the resulting 
sequence of values for the exponent is extrapolated to the N +. CD limit. In table 1, we 
give the results obtained using the VBS approximants to v. The same procedure was 
also applied to estimate l /v.  In table 2 we give the results and compare them with 
those obtained using another extrapolation procedure (fit of the sequence with C, + 
C J N " ) .  We also give an estimation of the errors. 

The results can be summarised as follows. (1) The values obtained assuming a 
pure power law are in agreement with those previously obtained by other authors; 

Table 1. The VBS approximants to v when (A) a pure power-law behaviour is assumed 
and when (B) logarithmic corrections are taken into account. The left-hand columns list 
the values of the exponent, v,,,,,+~, obtained from a two point fit for N = 4 , 6 , .  . . , 16. 

1.106021 
0.982 029 
0.924 23 1 

A 0.890 295 
0.867 748 
0.851 552 
0.839 275 

0.756 096 
0.727 885 
0.713 134 

B 0.704 243 
0.698 346 
0.694 165 
0.691 050 

0.873 762 
0.842 037 0.732 605 
0.823 107 0.723 840 0.707 328 
0.810 250 0.718 113 
0.800 819 

0.6% 968 
0.690 750 0.667 847 
0.686 737 0.668 602 0.668 380 
0.683 970 0.668 286 
0.681 950 

Table 2. Summary of the results obtained using the VBS approximants and the fit with 
C, + C2/ N" in the case of (A) a pure power-law behaviour and when (B) logarithmic 
corrections are taken into account. 

~ ~~~ 

A B 

VBS C ,  + C2/ N" VBS C,  + C2/ N" 

I /  V 1.42 f 0.02 1.3675 f 0.0002 1.497 * 0.002 1.507 * 0.003 
V 0.7 1 i 0.01 0.768 * 0.002 0.668 * 0.001 0.667 * 0.002 
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note, however, that the estimated values of v and l / v  depend significantly on the 
extrapolation procedures used. (2) When logarithmic corrections are taken into account, 
both extrapolation procedures yield essentially the same results which are in excellent 
agreement with the conjectured value of v, the difference being less than 0.2%. The 
difficulties in computing the eigenvalues of the Hamiltonian increase rapidly with the 
size of the cell and N = 18 is about the largest size which it has been possible to 
compute up to the present time. Accordingly, it is almost impossible to prove the 
presence of logarithmic terms, and the results shown in table 2 (case B) are indeed 
not final: they cannot be used to definitively show the validity of the den Nijs conjecture. 
However, they clearly support it. 

We have also evaluated the exponent v using the Callan-Symansik expression 
(Hamer and Barber 1981) and the derivative of the gap. The results obtained, which 
are similar to those shown in table 2, will be published elsewhere along with an 
extensive study of the I D  dimerised Heisenberg chain for arbitrary values of the 
alternation parameter 6. 

We are grateful to C Tannous, B Derrida, A M S Tremblay and R Rammal far helpful 
discussions and suggestions. This work was supported in part by the Natural Sciences 
and Engineering Research Council of Canada. 
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